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Estimation of effects of contact tracing and mask adoption on COVID-19 trans-

mission in San Francisco: a modeling study

Abstract

The current COVID-19 pandemic has spurred concern about what interventions may be

effective at reducing transmission. The city and county of San Francisco imposed a shelter-

in-place order in March 2020, followed by use of a contact tracing program and a policy

requiring use of cloth face masks. We used statistical estimation and simulation to estimate

the effectiveness of these interventions in San Francisco. We estimated that self-isolation

and other practices beginning at the time of San Francisco’s shelter-in-place order reduced

the effective reproduction number of COVID-19 by 35.4% (95% CI, −20.1%–81.4%). We

estimated the effect of contact tracing on the effective reproduction number to be a reduction

of approximately 44% times the fraction of cases that are detected, which may be modest if

the detection rate is low. We estimated the impact of cloth mask adoption on reproduction

number to be approximately 8.6%, and note that the benefit of mask adoption may be

substantially greater for essential workers and other vulnerable populations, residents return

to circulating outside the home more often. We estimated the effect of those interventions on

incidence by simulating counterfactual scenarios in which contact tracing was not adopted,

cloth masks were not adopted, and neither contact tracing nor cloth masks was adopted,

and found increases in case counts that were modest, but relatively larger than the effects

on reproduction numbers. These estimates and model results suggest that testing coverage

and timing of testing and contact tracing may be important, and that modest effects on

reproduction numbers can nonetheless cause substantial effects on case counts over time.
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Estimation of effects of contact tracing and mask adoption on COVID-

19 transmission in San Francisco: a modeling study

Introduction

The current COVID-19 pandemic has spurred concern about what interventions may be

effective at reducing transmission. In San Francisco and several nearby counties, an official

order to shelter in place1 took effect on March 17, 2020, directing people to stay at home and

avoid all but essential gatherings, travel, and business. Schools and some day care facilities

and public places such as parks have additionally been closed. On March 19, a similar

stay-at-home order was issued covering the entire state of California.2 More recently, San

Francisco has introduced a program of contact tracing, and has begun to require the use of

cloth face masks beginning April 18, 2020.3 At the time of this writing, the shelter-in-place

order has been extended through the month of May. The accumulation of new COVID-19

cases in San Francisco appears to have slowed since late March.

Because of the danger of widespread transmission of SARS-Cov-2 in terms of illness and

loss of life and potential overloading of health care resources, and hardships associated with

self-isolation, it can be important to estimate the effect of epidemic control measures on

transmission of the disease.

We used simulation models to estimate the effect of the March 17 shelter-in-place and

related changes on COVID-19 transmission rates in San Francisco.

While other models have attempted to estimate the impact of quarantine and isolation

[5–8, 10, 18–21, 23, 25, 27, 30–38, 40, 44, 46–48] or used complex models to look at the impact

of various interventions [11–13,39,45] none have yet combined mask adoption and test-and-

treat fit to local geographic data. We estimated the effects of contact tracing and widespread

1https://www.sfdph.org/dph/alerts/files/HealthOrderC19-07-%20Shelter-in-Place.pdf,
http://www.acphd.org/media/561969/faqs-order-shelter-in-place-20200324.pdf, retrieved May 3, 2020.

2https://covid19.ca.gov/img/Executive-Order-N-33-20.pdf, retrieved May 3, 2020.
3https://sfmayor.org/article/san-francisco-issues-new-policy-face-coverings, retrieved May 3, 2020.
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mask adoption on COVID-19 transmission rates in San Francisco, and projected case counts

forward four weeks with and without contact tracing and mask adoption to estimate their

effect on numbers of cases.

Methods

Data

County-level cumulative case counts are reported by individual counties, frequently on a

daily basis. These have been aggregated by the New York Times.4

Transmission model

Estimation of parameters and projection of case counts into the future were done using a

stochastic renewal process model that simulates a population of infected individuals, some

of whom are detected and included in reported case counts. The key assumptions were as

follows.

The time-varying reproduction number (Rt) is unknown. The model assumed a

constant value of Rt ranging from 0.3 to 5 until March 17, 2020, and three separate constant

values of Rt in the same range after March 17, with discontinuous changes on April 8 and

April 18, reflecting the adoption of San Francisco’s shelter in place, contact tracing, and cloth

mask policies. It produced estimates of Rt by selecting from these possibilities whichever

values were best able to match the case counts reported to date in the Bay Area.

The incubation period is approximately 5–6 days. The incubation interval was

modeled using a log-normal distribution with mean 5.6 days and standard deviation 4.2 days.

Transmission can begin before the onset of symptoms. Transmission was assumed

to occur roughly from two days before symptom onset to several days after system onset.

Delays in case reporting are variable. Reporting of cases was assumed to occur

4https://github.com/nytimes/covid-19-data, last accessed April 30, 2020.
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after a variable period of delay, most often around 4–5 days after symptom onset, but with

a tail extending out to several weeks after symptom onset.

The rate of reporting of true COVID-19 cases is unknown. The reporting rate

was allowed to range from 1.1% reporting (the lower bound value of 1 in 85 which appeared

in the initial draft of a recent Santa Clara county study [3], dated 17 April 2020, and

subsequently revised) to 60% reporting. The model selects whichever values are best able to

reproduce the case counts reported to date in the Bay Area.

For more detail, see the Appendix.

Estimation of effect of contact tracing on transmission

We estimated the impact of contact tracing on transmission using the same estimates of

the incubation period, timing of transmission events, and delay from symptom onset to case

detection as in the above model (see Appendix for details).

Contact tracing consists of identifying contacts y who may have been infected by a

confirmed case x and attempting to isolate them to prevent them from transmitting to other

people. If contact tracing happens the day a case x is detected, the success of contact tracing

can be modeled by estimating how often the detection date of case x predates the dates of

transmission from contacts y.

The interval from symptom onset of x to dates of transmission from contacts y is a sum

of random variables (Figure 1): the time from symptom onset of x to transmission to a

contact y (which may be negative), plus the incubation interval to symptom onset of y, plus

the interval from that to transmission from y.

By Monte Carlo sampling we found that the detection interval is exceeded by the interval

to transmission from contacts in approximately 44% of cases.

We conducted sensitivity analysis of these assumptions by altering the mean time to case

detection downward from 8.9 days to 5 days, and upward to 13 days, while leaving the logSD

parameter unchanged. We found detection predating transmission to contacts of contacts in

64% and 29% of cases, respectively.
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Confirmed Case (x)

Contact (y)

Infection of x

Infection of y

Transmission from y

Incubation Transmission Detection

Time

Figure 1: Schematic of timing of events involved in contact tracing. Contact tracing
of a confirmed case (x) aims at preventing transmission from contacts (y) of that case. It
can succeed when potential transmission events occur after case detection (lavender shaded
area). This requires the interval from symptom onset to case confirmation (purple arrow)
to be shorter than the time to transmission to a contact (red arrows, upper line) plus the
incubation period of a contact (light blue arrow, lower line) plus the time to transmission
from a contact (red arrows, lower line).

Thus, we assumed that contact tracing can prevent 44% of transmission from a primary

case. We modeled contact tracing by a reduction in reproduction number of 0.44 pd, where

pd is the probability that a given case is detected.

San Francisco’s contact tracing program, aside from a brief early rollout, went into effect

gradually in early April 2020. We approximate this for modeling purposes by a start date

of April 8, 2020. We used the above estimate to model what would have happened in the

absence of the contact tracing program by modeling case counts assuming that reproduction

numbers are inflated by a factor of 1/(1− 0.44 p̃d) from April 8 onward, where p̃d is the rate

of case detection estimated by the model.

6

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2020. .https://doi.org/10.1101/2020.06.09.20125831doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20125831
http://creativecommons.org/licenses/by/4.0/


Estimation of the effect of cloth mask adoption on transmission

We estimated the effect of wearing cloth facial masks in the community and workplaces in

reducing transmission [2,15,17,26,29,41]. We assumed the population to be 80% compliant

with mask wearing policy, that cloth masks reduce the probability of an infected individual

transmitting to an uninfected and unmasked individual by 30%, and that an uninfected

individual is only 10% protected by wearing a cloth mask, based on studies showing that

the primary benefit of wearing cloth or surgical masks is to protect the environment from

the wearer rather than the wearer from the environment [2,15,41]. These probabilities were

combined to yield an overall reduction of transmission probability in workplaces as well as

the community of 30.1%.

These estimates were then used to estimate the overall population reduction in trans-

mission when mask wearing is implemented in the communities and workplaces. We used

estimates of contact and transmission rates from influenza models to estimate the contri-

bution of the neighborhood and workplace to effective transmission [14]. We also used the

mean length of the infectious period and a mean household size of 2.69 in the San Francisco

Bay Area [1] to estimate the reduction in effective transmission within the household due

to depletion of susceptibles over the infectious period, to more accurately estimate effec-

tive contribution of household transmission to the overall transmission. Based upon a 75%

reduction [12] in effective contact rates in the workplace and community domains under

Shelter-in-Place orders, we estimate that 71% of transmission occurs in households, 17% in

the neighborhood and 12% in the workplace. From extending these assumption, we estimate

that masks will be worn during only 29% of otherwise effective transmissions, and thus masks

will reduce effective transmission rate by 8.6%.

We note that this estimate reflects assumptions that the interactions affected by mask

usage—contacts in neighborhoods and workplaces—are substantially reduced by the practice

of sheltering in place. If communities return to work and to circulating in public more, the

use of masks will surely have more effect. We note also that the benefit of masks may be

much greater among people who are less able to self isolate, such as essential workers or
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unhoused individuals.

We used this estimate to model the effect of mask use on epidemic dynamics by modeling

a scenario in which masks were not adopted on April 18, the start date of San Francisco’s

cloth mask policy, by assuming that reproduction numbers are inflated from April 18 on,

by a factor of 1/(1 − 0.086), or approximately 1.094, and by modeling the case in which

both contact tracing and cloth masks were not adopted, by combining this inflation with the

inflation described above for contact tracing.

Results

We estimated effective instantaneous reproduction numbers Rt under the above mentioned

model assumptions of piecewise constant values, reflecting a possible changing effect of social

distancing and other protective measures (Figure 2). Our model estimated a decline in

reproduction numbers, from a mean value of 1.87 before 17 March (95% central interval,

1.38–2.62) to 1.15 (95% central interval, 0.37–1.86) between 17 March and 7 April. San

Francisco’s shelter-in-place policy and related measures were estimated to have led to a mean

35.4% reduction in effective reproduction number (95% central interval, −20.1%–81.4%).

Second, we estimated how the recent course of the outbreak might have been altered by

the adoption of contact tracing and masks. We used the renewal process model to generate

estimates of time-varying reproduction numbers, overall incidence, and other parameters

from daily reported case counts from January 2020 through May 19, 2020. We compared the

model fit to true reported cases to three counterfactual scenarios for Bay Area transmission

during those dates (Figures 2 and 3). The model’s mean estimated reproduction number

Rt declined from 1.85 to 1.13 in San Francisco following widespread sheltering in place,

consistent with substantial reduction in transmission as a direct result of the intervention. A

median count of 36.7 reported cases per day was estimated over the final week May 13–May

19, 2020 in the fit to San Francisco reported data, compared to medians of 40.9 daily cases in

the counterfactual scenario without contact tracing, 41.9 daily cases in the scenario without

8
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mask adoption, and 52.7 daily cases in the scenario without both contact tracing and masks.

Discussion

Despite a substantial estimated decline in transmission rate, represented by change in re-

production number at the time of sheltering in place, San Francisco has not achieved unam-

biguous subcriticality and thus we cannot conclude that the epidemic is ebbing.

We have estimated that reductions in transmission associated with both the contact

tracing program and the adoption of cloth masks may be modest, but we note that because

the reproduction number Rt is an exponential growth rate, modest differences in Rt can lead

to substantial differences in the course of an outbreak.

We also note that while the effects of both interventions on Rt may be modest, it is for

different reasons. The impact of contact tracing on the overall rate of transmission may be

smaller than it could be for two reasons: because contact tracing is carried out on individuals

who receive positive test results, who may be a fraction of the true number of cases, and

because fast spread of the infection combined with delays in case detection may make it

difficult to isolate contacts before they pass on the virus.

Cloth masks, on the other hand, which can reduce transmission substantially in neigh-

borhood and workplace settings, are estimated to have a modest impact on transmission

during shelter in place measures simply because neighborhood and workplace contacts are

contributing less transmission. It is likely that masks can reduce transmission more substan-

tially if social distancing practices are lessened, and that they can be important in reducing

transmission to essential workers, including healthcare workers, and among populations who

may have substantial contact with strangers such as unhoused communities.

Our estimate for contact tracing points to the importance of widespread testing in con-

trolling the spread of this disease. In addition, it highlights the importance of timing to

the effectiveness of contact tracing. Contact tracing may be most effective in interrupting

transmission when applied to seed cases who are identified very soon after symptom onset

9
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Figure 2: Model estimates of effective Rt and number of cases, fit to San Francisco
counts and in three counterfactual scenarios. Top Left: model fit to San Francisco
counts; Top Right: supposing contact tracing did not begin April 8, 2020; Bottom Left:
supposing adoption of cloth masks did not begin April 18, 2020; Bottom Right: supposing
both contact tracing and cloth mask adoption did not happen. Model assumes Rt constant
except for instantaneous changes on March 17, April 8, and April 18, 2020. Ribbons show
mean and 95% central interval of effective Rt values and median and 95% central interval of
model case counts, weighted by importance sampling (see Methods).
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Figure 3: Distributions of model case counts over the week May 13–May 19, 2020,
with and without interventions. Estimated from model outcomes using Gaussian kernel
smoothing with bandwidth of 20 cases. Vertical bars represent median number of cases.
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(if not before), and to their most recent contacts. There might be some benefit to contact

tracing some individuals prospectively without waiting for a positive test result, to gain the

advantage of time at the cost of some accuracy. We note also that contact tracing has mul-

tiple goals and benefits beyond reducing transmission, including locating cases and giving

people access to guidance and testing and treatment.

We note that our group found a similar modest effect of contact tracing in measles control,

because the much higher transmissibility means that much transmission may be to casual

or anonymous contacts who are hard to identify, as well as because high vaccination rates

imply that many contacts will have already been vaccinated [24].

This model exhibits the following limitations. We assumed constant reproduction num-

bers Rt before and after the adoption of San Francisco’s shelter in place policy, so this model

cannot detect more detailed changes in Rt. The model assumes uniform dynamics across all

cases in a simulation of a county, not accounting for specific geographic and demographic

heterogeneity. The city and county of San Francisco is modeled in isolation, without migra-

tion or transmission across county lines (since we anticipate more transmission within than

between counties). Detection rates are assumed to be constant per capita; a gradually rising

detection rate can cause an upward bias [28]. If testing is limited by available resources, the

assumption of a per capita rate may not be justified. Alternative hypotheses for the un-

known interval distributions of generation time and time to detection should be evaluated.

In particular, the impact of the amount of transmission occurring before onset of symp-

toms, and the tail of long times to detection, should be examined carefully. The distribution

of generation intervals is affected by censoring of transmission after cases’ detection dates,

which shifts generation intervals to shorter times, so that our baseline interval distribution

should ideally be for generation times in the absence of detection, but our estimates are taken

from populations with some amount of detection. This could lead to bias toward shorter

generation times than is accurate. Heterogeneity in transmission rates between communities

within the city, and across racial differences, appears to be very important as vulnerable

populations and specifically people of color are disproportionately affected, and should be

12
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considered explicitly where possible.
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Appendix

Stochastic model implementation

The simulation model constructed a stochastic time series of case counts by day, based on

assumptions about transmission rates and time intervals. Let the number of transmission

events (equivalently, the number of cases infected) on day i be denoted ti. Each run of the

simulation began with some number of index cases infected on day 1. For each day i, the

model estimated secondary cases from the ti cases infected on day i. Each secondary case

was assigned an infection date j > i, and it was added to the count tj.

Case detection was modeled as follows. Let di denote the number of cases that would

be detected on day i if detection were perfect. We assumed cases are detected with and

independent and identical probability of pd per case. Each primary case that was infected on

day i as above was assigned a counterfactual detection date k at the same time its secondary

cases were simulated. All cases were added to the count dk of potential detections. For

successful detections, no secondary cases whose infection date falls after day k were simulated.

Time series generated by this process are assigned a likelihood score reflecting their

similarity to the series of case counts reported by health departments. The count of reported

new cases by day was smoothed for this purpose using a five day moving average. Given a

series Ci of smoothed reported new cases by day, the likelihood was the binomial probability

of detecting Ci cases given di cases to be detected and detection rate pd. The likelihood

assigned to a simulation time series overall was constructed from the mean of daily log

likelihoods over all the daily counts that were used in scoring. For scoring, case counts

before the first date on which the number of new cases was greater than two were omitted,

and all days from that day forward were used for scoring. The assignment of model days i

to calendar dates was made by assigning the first day of simulation to a random date 1 to

21 days before the first scoring date, to allow for model populations with differing values of

Rt to take differing amounts of time to arrive at case counts matching the scoring values.
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Epidemiological assumptions

We built our COVID model from an earlier simulation model, which was used to represent

measles or Ebola virus disease transmission [42, 43]. In simulating transmission of SARS-

CoV-2 from individual to individual, we used several assumptions.

We first assumed independent and identically distributed random times for the incubation

interval, i.e., the number of days from infection of an individual to symptom onset. Given

that interval, the time to case detection is an independent identically distributed offset from

the date of symptom onset, as are all transmission events from that individual.

The number of secondary cases per case is assumed to be negative binomially distributed,

and independent between cases. The mean number of cases per case (the effective reproduc-

tion number Rt) is taken to be constant except for specific changes, reflecting recommenda-

tions for social distancing. Bay Area counties were recommended to begin social distancing

on 17 March 2020. Rt takes a single value before 17 March and three constant values there-

after, in the same range, with discontinuous changes on 8 April and 18 April, representing the

dates of adoption of contact tracing and cloth masks. The model selects values from those

ranges based on their ability to reproduce the reported case counts in Bay Area counties.

Finally, the rate of detection of COVID-19 cases is unknown, and may be changing over

time depending on test availability. Detection probability per individual ranges from 0.011

to 0.6 both before and after 10 March, and those two values are selected separately based

on matching Bay Area case counts.

The model uses the above assumptions to generate stochastic time series of numbers of

all infected individuals, and of the smaller numbers who are detected (reported). The detec-

tion rate is used as a binomial likelihood function to assign likelihoods to model timeseries

and the parameter values that generated them, which is used in sampling/importance re-

sampling [22] to construct a posterior distribution of parameters and outcomes. Simulation

outcomes projected forward in time are used with this importance distribution to construct

probabilistic forecasts.
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Parameterization

The distribution of number of secondary cases per primary case is assumed to be

negative binomial, with mean Rt and dispersion parameter k [4]. The value of Rt can vary

by day of transmission. We are assuming that Rt takes on four values, constant except for

instantaneous changes on 17 March 2020, 8 April 2020, and 18 April 2020, reflecting the

dates of introduction of San Francisco’s shelter in place policy, contact tracing program, and

cloth mask policy, respectively. These constant values are uniformly distributed from 0.3 to

3.0 in each of these periods. The dispersion parameter k is assumed constant in time, at a

value sampled uniformly from 0.1 to 0.8 (representing distributions with more tail density

than the geometric distribution, as has been estimated in other diseases, i.e. presence of

some frequency of superspreading events).

The distribution of number of days from infection to symptom onset, i.e. the

incubation period, was assumed to be log-normally distributed with mean 5.6 days and

standard deviation 4.2 days [16].

The distribution of number of days from symptom onset to a transmission event,

which may be negative reflecting presymptomatic transmission, was modeled by −2.5 days

plus a gamma distributed number of days with scale parameter 1.5 and shape parameter

2.1 [16]. This assumption was modified by using this distribution to model transmission

events relative to either the symptom onset date or 3 days after infection, whichever is later.

The distribution of number of days from symptom onset to becoming a reported

case, the detection interval distribution, is assumed to be log-normally distributed with

mean 8.9 days and standard deviation 7 days, to reflect the possibility that some cases may

be detected soon after symptom onset and others may be detected several weeks later.

The detection probability is assumed constant, taken from a uniform distribution from

0.011 to 0.6.

One index case is assumed to seed each simulation realization, with an infection date

uniformly sampled 1 to 21 days before the first recorded case count used for likelihood

scoring.
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Calculation of effective reproduction number

Central estimates and confidence intervals on daily counts and parameter values are con-

structed by importance sampling as follows. Likelihoods are transformed into a probability

distribution by normalizing to 1:

px = lx
/∑

y

ly

where lx is the likelihood of realization x.

Estimates for future cumulative case counts are constructed using the importance sampled

model series of new counts by day, by adding the cumulative new counts on days after the

last reported date to the last reported count.

The effective reproduction number by day can be recorded in at least two ways. First,

the effective reproduction number of each case with a given date of infection is the actual

number of cases infected by that case,

Rx =
∑
y

t(x, y),

where t(x, y) is one if case x is the source of infection for case y infection, and zero otherwise.

The effective “case reproduction number” on a given day is the average of those of the cases

infected that day:

Rc
t =

∑
x|i(x)=t

∑
y

t(x, y)
/ ∑
x|i(x)=t

1 =
∑

x|i(x)=t

∑
y

t(x, y)
/ ∑
z|i(z)=i(x)

1


where i(x) is the date of infection of case x.

Second, a measure of instantaneous effective reproduction number by day [9], measuring

transmission occurring on a given day rather than transmission from cases infected on a

25

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2020. .https://doi.org/10.1101/2020.06.09.20125831doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20125831
http://creativecommons.org/licenses/by/4.0/


given day, but in units of cases per case, is

Rt =
∑

y|i(y)=t

∑
x

t(x, y)
/ ∑
z|i(z)=i(x)

1

 .

These two quantities averaged over all days of the model will give the same overall average

R. The second estimator gives a more timely indication of changes in transmission rate.

The model estimates of reproduction number by day reported in this paper are con-

structed using the latter method, computed from the actual number of transmission events

generated by the simulation per day.
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